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Motivation: Diverse Problems, Similar Solutions

* Use the Philosophy/Theme: Diverse Problems, Similar Solutions

- An Interdisciplinary team approach

* My technical specialty is statistical signal/image processing, estimation/detection, pattern

recognition, sensor fusion and control

* My application areas are in acoustics, electro-magnetics and particle physics, including:
- Seismic oil exploration and seismic treaty verification
- Acoustic classification/detection of artificial heart valve damage
- Ultrasonic nondestructive evaluation of materials
- Acoustic classification/detection of facility activity

- Buried land mine detection (IR, Visible Wavelength, GPR, UV)

* The session organizers invited me to the ASA session on Animal Acoustics

in Portland May 2009 — look at it from a signal processing point of view

Lawrence Livermore National Laboratory lll-
LLNL-XXX-XXXX Grace A. Clark, Ph.D.
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Dolphin Whistle Spectrograms Show a Narrowband Frequency-
Modulated Contour that is Smooth and Frequency-Localized*
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Note the Harmonics
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.
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Dolphin Whistle Spectrograms Can Contain Strong Harmonics*
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.
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Dolphin Echolocation Clicks are Short-Duration Broadband
Signals Showing Vertical Line Patterns in the Spectrogram*
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.
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Signals Generated by Mechanical Processes Generally Have Low
Constant Frequencies => Horizontal Lines at Low Frequency
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.
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Ambient Noise in Warm Shallow Water Worldwide is Dominated
by Broadband Crackling or Popping from Snapping Shrimp*

» One shrimp snapping sound

makes a narrow vertical line

» Many shrimp sounds overlap
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and are not as clear as dolphin

clicks
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.

Lawrence Livermore National Laboratory lll-
LLNL-XXX-XXXX Grace A. Clark, Ph.D.

10



A Dolphin Whistle Corrupted by Snapping Shrimp Noise*
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.
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Frequency (Hz)

Two Problematic Dolphin Whistle Spectrograms
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* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the
fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170.
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Generally, Methods for Classification, Inverse Problems

and Fusion are Either “Data-Based” or “Model-Based”

Little prior knowledge

available (e.g. Physics

Models, priors).

Develop nonparametric

or “Black Box” models

from measured data

only.

Examples:

-Clustering

-K-Nearest Neighbor

-Feature Analysis

-CART (Classification
and Regression Trees)

-Neural Networks

\-Bayesian Classifier(s) /

/ Data-Based Methods \

Lawrence Livermore National Laboratory
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Model-Based Methods

Maximum Likelihood/

Optimal Least Squares

Use least squares
optimization algorithms
to minimize mean-square
error between model
predictions and observed

measurements.

Examples:
-Wiener/Kalman Filters

(Linear)
-Extended Kalman Filters

(Linearized Nonlinear)

Bayesian Methods

Use probabilistic
sampling algorithms to
estimate likelihoods
and posterior
probabilities comparing
model predictions and

observed measurements.

Examples:
-Markov Chain Monte

Carlo
-Sequential Monte Carlo

-Bayesian Belief Nets

Grace A. Clark, Ph.D. LL
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Target Recognition Depends Heavily on the

Judicious Choice of Signal / Image Features

Signals/Images

\/

Signal

Acquisition

Lawrence Livermore National Laboratory
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Signals/Images

Pre-
Processing

Examples:

* Register

» Segment

*Threshold
* Filter

*Array Proc

Feature

Extraction

Examples:

* Signal

’ Features

* Histogram
Features

*Spectral
Features

* Transform
Features

Features

Signal Representation

Selected
Features Class
Decision
Feature Class-
Selection ificati
selection ification L > Class 1
Examples: Examples: [—>Class 2
*Clustering « Neural
« Sequential .’ Networks/ .
selection . Pattern
* Branch & Recog. |
Bound * Fuzzy ’
Classifiers
* Rule Based " Class M
Systems
* Model-
Based Algs.

_— 0 /=

\/

Signal Understanding

Grace A. Clark, Ph.D. lL



Hypothesis Testing Generates a Receiver Operating

Characteristic (ROC) Curve

/ t =Time

s(t) = Signal of Interest

v(t) = Noise or “Background”
r(t) = s(t) + v(t) = Measurement
\ Y = Decision Threshold

~

)

|

Hypothesis 0, (Active) :

r(t) =s(t)+ n(t)}

Hypothesis 0, (Inactive): r(t)=n(t)

Probability Density Functions (pdf’s)

 f(r) = pdf

[

f(rlo,)
/

Decision

Threshold

ROC Curve

P(False Alarm) = P,,,(y) = }f(r 16,) dr

P(Detection) = P,(y) = }f(r 16,) dr

Lawrence Livermore National Laboratory
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+ Pp = P(Detection)
X
1
f(r16)
/o !
SNR
Feature r 0 1 "
= Decision Statistic Pea
= P(False Alarm)

Grace A. Clark, Ph.D. lL
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The ROC Is Computed by Integrating Under the Conditional
Probability Density Functions for a Given Threshold r,

r = Detection Statistic (Grey Scale Values)
For Example: Posterior Probabilities P(H, | X) or P(H, | X)
f(r) = pdf
A
f(r | Ho)

/ fir | Hy) P(H,|H,) =P, (r)

o = Feature r
Decision = Detection Statistic
. Threshold
P(H,\H) =Py(r,) =[f(r1H)dr =1-P(H,IH) =1-Py(r)

P(H,\Hy) =Pg.(r) = [ f(r1H,)dr

—Q0
Lawrence Livermore National Laboratory lll-
LLNL-XXX-XXXX Grace A. Clark, Ph.D. 17




The Confusion Matrix (Contingency Table) Can Be
Obtained from a Finite Number of Samples

Truth
Decision 91 92
P(06,186,) = P(Detection) P(6,10,)=P(False Alarm)
6, _ No. Samples Classified 6, _ No. Samples Classified 6,
No. 0, Samples No. 0, Samples
P(0,1806,) = P(Miss) P(0,10,) = Specificity
0, _ No. Samples Classified 0, _ No. Samples Classified 0,
No. 6, Samples No. 0, Samples

PO 16)+ P0O,10)=1
P, 10,)+ P(0,10,) =1
P(Correct Classification) = P(CC) = P(0,16,)P(6,) + P(0, 10,)P(0,)

Lawrence Livermore National Laboratory T lll-
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Grace Clark

Feature Analysis Is Key to Event Flaw Recognition

Feature Extraction Feature Selection
« Raw data z(t), I(x,y) * Use displays to obtain physical
* [z(t)], [I(x,y)l intuition
« Histogram features * Feature space plots
» Spectral features * SNR vs. freq.
* Ratios of peaks =IElch
* Power spectral density
« Spectrograms * Feature selection algorithms
« Scalograms (wavelets, to rank order features according
hierarchical transforms) to class separability measures.
* Higher-order spectra
« Other features (shape, size) * Relate feature space to physics
tfﬂ%&:kiggmewational Laboratory p——— UL_ )

Clark-10/20/09



Gabor transform features extract information on
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= 2D Gabor filter kernels

hx,t) = g(x,t)e
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the structural properties of image

cos9 —sind );l g = at.an(f)
sin® cos8 ||/

i2m (kx + wi)

il
L4 . l”I
imaginary part of kernel
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Gabor frequency response : tunable on orientation

bandwidth and frequency bandwidth
‘ 7 2 2
—2n2[(u—k)'20x2+ (v—w)'zot } fO = Nk +w
H(u,v) = e
- 0 »!
X
1%

| fO(S +0.1874
orientation —1 (0 1874) frequency Bu = log X
2

bandwidth By = 2tan f bandwidth f,0.-0.1 874
ot
Lawrence Livermore National Laboratory UL-
LLNL-XXX-XXXX Grace A. Clark, Ph.D. 21



Gabor Kernels

Orientation, ¢ SlEe. @

Axis Ratio, A
, 03 . G0

Lawrence Livermore National Laboratory lll-
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We Create a Gabor Data Block, then Reduce its

Dimensionality
Gabor
Kemel 1
Gabor
Kernel 2

Gabor
Transform 1

Gabor
Transform 2

Gabor
Transform P

N - N
Gabor Data Bloc

Feature Vectors (FV's)

Most Important FV's

Lawrence Livermore National Laboratory
LLNL-XXX-XXXX
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Feature Selection Example: Automatic Event Picking for Seismic

Oil Exploration

Rank Order the Features According to the In the
Bhattacharyya Distance, Using Sequential Feature Selection

Red = Events Increase in the Bhattacharyya Distance
White = Background

1
0.8
0.6
0.4
0.2

0

IGabor phasel (rad/n)
\ Bhattacharyya distance

R 2 e TR TR T
Gabor magnitude (arb. units)
large scale, 0

Attributable to Each Feature

distance between event and GM = magnitude of Gabor transform
background cluster used GP = phase of Gabor transform

Lawrence Livermore National Laboratory
LLNL-XXX-XXXX

Grace A. Clark, Ph.D. LL
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Typical Approaches Involve Pre-processing, Pixel

Classification, Region Formation and Post-processing

Event Region
Formation

Raw
Images
Pre- Pixel
Processing Classification
- To Improve and Labeling
SNR, To Classify
Remove Pixels as Event
Distortion or Background
Example Example
Pre-Processing Pixel Classification
Algorithms: Algorithms:
* Filtering * Feature extraction

« CFAR (Constant
False Alarm Rate)

* Feature selection
* Probabilistic

Detection Neural Network
* Deconvolution, Classification

Superresolution

\4

to Group Pixels
into Candidate

Event Regions

Example
Region Formation
Algorithms:

Region growing/
merging/
Connected
Components
Analysis

Event
Post- .
) Locations
»| Processing |—»
to Improve
SNR
Example

Post-Processing
Algorithms:

* Morphological
Filtering

+ Size and Shape
Constraints

* Performance Estimation:

P(Correct Classification)

Lawrence Livermore National Laboratory
LLNL-XXX-XXXX

Grace A. Clark, Ph.D. LL
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RixellClassificationfandjfabeling

Are Likely to Involve Supervised Learning

Image

Feature

Extraction

—( To Quantify
Events and
Background

Example
Feature Types:

+ Histogram / Amplitude

* Texture

* Multi-Resolution
(DOG, Wavelets, etc.)

- Etc.

Lavemiz@tivesnaredlational Laboratory

LLNL-XXX-XXXX
Clark-10/20/09

\4

Feature
Selection
to Find the
Best Subset of
the Features

Extracted

Example
Feature Selection
Algorithms:

+ Sequential
Forward
Selection

* Branch and
Bound

Pixel
Classification
to Classify
Pixels as Event
or Background

Example
Classification
Algorithms:

* Probabilistic
Neural
Network (PNN)

- Statistical and/or
Neural Network

Classifiers

Image

Labeling

to Form a
Classified /
Labeled Image

Labeled

Image
—

Candidate
Labeling
Algorithms:

+ Binary image:

1 = event pixel,

0 = background pixel

+ Posterior
Probability
P(EventiX)
at Each Pixel

Grace A. Clark, Ph.D. lL

26



Lawrence Livermore National Laboratory

EXAMPLE APPLICATION:
AUTOMATIC EVENT PICKING FOR VELOCITY
ESTIMATION IN SEISMIC OIL EXPLORATION
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ﬂ)il Companies Search for Geological Structures \

Oil and gas
accumulations ()

Slate (hard) | /
N Vi ,

Salt

66 b
Sandstone V2 ' Dg?e

¢ CPlu g9 b

V3 2-3 Times
V4 Faster than
Surrounding
Material

+ Oil tends to collect in sandstone (lighter than water)

\-It 1s difficult to estimate velocity models near a salt dome J

Lawrence Livermore National Laboratory T lll-
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The Objective of Seismic Surveying is
to Supply Images of Subsurfac
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"A Common Reflection Point (CRP) Panel

— 1S Generated Using Multiple Offsets .

<+— Offset  —»
Sources Geophones

Offset
.

+
Common Depth‘
Reflection or
Point (CRP) ime Y

iy

Hyperbolic
Moveout

/

L—

Lawrence Livermore National Laboratory
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We Plot Common Reflection Point (CRP) Panels

in Mosaic Form for Analysis

\‘ Session Dala Display Picking

Offset

31
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Real CRP panels are plotted
side-by-side in ‘“mosaic’ fashion

N

Offset — >
Lawrence Livermore National Laboratory LI-
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Multiple CRP Panels Create

a 3D Data Set for the Subsurface

Subsurface Point (SSP) o
, » xory Note the abrupt shift in
Offset the geologic layer'jtructure
\Wﬂ
— .
! & Yy, Ny, \\ s
“‘. gy S
or
time Q‘ —_ -

Lawrence Livermore National Laboratory
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A Common Offset Panel (COP)

is a Slice Through 3D Space Along the x and z Directions

Seson Dala Display Pieking

34

Grace A. Clark, Ph.D.
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ﬂommon offset panels are analyzed to find geologic structur&

 COP implies (X, z, fixed offset) Oil and gas
accumulations ()
Slate (hard)
~ X V1 Salt
Sandstone V2 “Dome”
/ or
CCPlug”
V3 2-3 Times
V4 Faster than
Surrounding
Material

* O1l tends to collect in sandstone (lighter than water)

k-lt 1s difficult to estimate velocity models near a salt dome /

Lawrence Livermore National Laboratory P lll-

LLNL-XXX-XXXX
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Processing flow E @

raw Eata | event picks
pixel proximity event peak
classification| | constraints region finding &
formation constraints

\

feature feature

pixel labeling

extraction selection

Lawrence Livermore National Laboratory T lll-
race A. Clark, .U,
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Pre-stack migrated data (raw data) L_@J @

B Gulf of Mexico
B 2D dataset

4
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4q|
|‘4

sz
—

"
N

2z

//////

SN

«mEif ,\

offset (ft in 10005)
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Useful features of the raw data

2 _

41}

4.2t

4.3}

4.4¢

time (s)

4.5¢
4.6}

4.7t

Lawrence Livermore National Laboratory
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offset (ft. in 1000s)

B statistical moments
— mean
— standard deviation
— moment over red box

B semblance

B Gabor transforms
— magnitude & phase
— 2 scales

— 4 angles
& 0°,-25°-50°,-75°

Grace A. Clark, Ph.D. lL
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Event feature images are formed

Gabor magnitude
(large, 0°)

Gabor phase
(large, 0°)

standard
deviation

Lawrence Livermore National Laboratory lll-
Grace A. Clark, Ph.D.
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Features are ranked via Sequential Forward
Selection algorithm
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o
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Gabor magnitude (arb. units) T T s e S
large scale, 0°
. distance between event and [GM = maghnitude of Gabor transform |
§ cluster used !GP = phase of Gabor transform
Lo = ERR Rt AR s LB i S
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Posterior probability image using event features
as input E @@_

® training set (hand
picked)
— 107 events
— 100 background
— 20 out of 468 CRPs
— 0.5% of picks
B probability of correct
classification
— 95% *+ 4%
B key:
— red = event
— = background

time (s)

5 10 15
offset (ft. in 1000s)

Lawrence Livermore National Laboratory P e—— lll.
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Binary labeled image E @

4 ——

4 =

a2} '

4.3? o

4.4} |
time (s) :—-——._"

4.5}

4.6}

4.7}

5 10 15

offset (ft. in 1000s)
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Connected components labeled image E @

time (s) '
4.5¢

4.6f

4.7t

5 10 15
offset (ft. in 1000s)
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Event image

B size 4
B one time/ 4l
offset / cloud
B continuous 421
B max posterior V. | T T
robabilit
B y 4.4}
time (s)
4.5}
4.6}
4.7t

5 10 15
offset (ft. in 1000s)
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__ Automated picks compared to human picks

EW_
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A Full “Picked” CRP Panel:

The Automated Picks Are Displayed as Red Lines

%22 o

5 10 18
offset (ft in 1000s)

The Automated Picks
Match the “Human

Picks”

Lawrence Livermore National Laboratory
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Discussion and Summary

e Similar problems in other disciplines have been worked using
statistical signal and image processing algorithms along
with the physics

* Please see the references

* | hope this presentation has stimulated ideas for interdisciplinary research

Lawrence Livermore National Laboratory T lll-
race A. Clark, .U,

LLNL-XXX-XXXX 47



References

M. E. Glinsky, G. A. Clark, Peter K.-Z. Cheng, K. R. Sandhya Deyvi, J., H. Robinson, and G. E. Ford,
“Automatic Event Picking in Prestack Migrated Gathers Using a Probabilistic Neural Network,”
Geophysics, Vol. 66, No. 5 (September-October, 2001), pp. 1488-1496.

G. A. Clark, S. K. Sengupta, W. D. Aimonetti, F. Roeske and J. G. Donetti, “Multispectral Image Feature
Selection for Land Mine Detection,” Lawrence Livermore National Laboratory report UCRL-JC-124375-
Rev.1, IEEE Trans. Geoscience and Remote Sensing, January, 2000, pp. 304-311.

G. A. Clark, “The Revelations of Acoustic Waves,” Science and Technology Review, Lawrence Livermore

National Laboratory, Lawrence Livermore National Laboratory, UCRL-52000-99-5, U. S. Government
Printing Office 1999/783-046-80013, May, 1999.

P. C. Schaich, G. A. Clark, K.-P. Ziock, S. K. Sengupta, “Automatic Image Analysis for Detecting and
Quantifying Gamma-Ray Sources in Coded Aperture Images,” IEEE Transactions on Nuclear Science,
Vol. 43, No. 4, August, 1996.

N. K. DelGrande, A. Toor, G. A. Clark, R. J. Sherwood, J. E. Hernandez, S. Y. Lu, P. Durbin, D. Nelson,
M . Lawrence, M. Spann, and C. Fry, "Airborne Detection of Buried Minefields," Energy and Technology
Review, Lawrence Livermore National Laboratory, December, 1991.

G. A. Clark, M. E. Glinsky, K. R. S. Devi, J. H. Robinson, P. K.-Z. Cheng, G. E. Ford, “Automatic event picking in pre-
stack migrated gathers using a probabilistic neural network,” Society of Exploration Geophysicists (SEG) International
Exposition and 66th Annual Meeting, Denver, Colorado, November 10-15, 1996.

Lawrence Livermore National Laboratory lll-
LLNL-XXX-XXXX Grace A. Clark, Ph.D.

48



Lawrence Livermore National Laboratory

U RACKS

L

Grace A. Clark



There is a velocity analysis bottleneck in *
— pre-stack migration E @ __

velocity model
v(X,y,z)

ray trace

update the
velocity model

form pre-stack
migrated
gathers

pick events

Lawrence Livermore National Laboratory lll-
Grace A. Clark, Ph.D.

LLNL-XXX-XXXX 50



